вторник, 15 ноября 2016 г.

Собственные числа и векторы

Урок: Собственные числа и векторы

Транскрибация урока: [ЗАСТАВКА] Из этого видео вы узнаете, что такое собственные векторы и собственные значения, и для чего они нужны. Как мы уже много раз обсуждали, матрица задает линейное преобразование из одного векторного пространства в другое. Если матрица квадратная, то она переводит векторы из некоторого пространства в это же пространство. Например, мы можем взять некоторую картинку и немного повернуть ее вправо. Давайте при этом посмотрим, что происходит с отдельными векторами. Рассмотрим вертикальный красный вектор. После преобразования он немного поворачивается вправо, он меняет свое направление. А вот синий горизонтальный вектор смотрит в ту же сторону, он остается горизонтальным после применения нашего преобразования. По сути, он смотрит именно в ту сторону, в которую и происходит линейная трансформация. Такие векторы, которые не меняют направление движения после преобразования, очень важны и называются собственными векторами. Если говорить формально, собственный вектор — это такой ненулевой вектор x, что A * x = λ * x. λ называется собственным значением. По сути, это уравнение говорит, что вектор x после воздействия на него линейного преобразования A может растянуться или сжаться, но при этом не поменять свое направление. У собственных векторов есть такое свойство: если матрица A имеет размер n * n, то число различных собственных векторов и собственных значений не может превышать n. Давайте в качестве примера рассмотрим матрицу размером 2 x 2 с элементами 2, 1, 1,5 и 2. Если визуализировать ее, то эта матрица, по сути, переводит единичный квадрат в некоторый ромб, растягивая его вправо и вверх по диагонали. Если мы посчитаем собственные векторы и собственные значения этой матрицы, то получим, что первый собственный вектор будет смотреть вправо и вверх по диагонали. По сути, он смотрит ровно в ту сторону, в которую мы растягиваем наш квадрат. При этом собственное значение при нем будет довольно большим: оно равняется 3,2. Второй собственный вектор будет перпендикулярен первому, он будет смотреть влево и вверх. По сути, это тоже важное направление для матрицы: в эту сторону матрица сильнее всего сжимает наш квадрат. Собственное значение при втором собственном векторе будет поменьше: оно равняется 0,77. Зачем вообще нужны собственные векторы и собственные значения? Дело в том, что они будут постоянно всплывать, когда мы будем решать задачу уменьшения матрицы с максимальным сохранением информации в ней, потому что собственные векторы дают наиболее характерные направления движения этой матрицы, наиболее характерные направления изменения векторов. Также мы столкнемся с собственными векторами, когда будем решать задачу понижения числа признаков. В этом случае собственные векторы будут показывать, на какие оси нужно проецировать наши данные чтобы максимально сохранить дисперсию в них, максимально сохранить их разброс. Это называется методом главных компонент. Итак, что мы узнали? Собственные векторы — это направления, в которых матрицы лишь растягивают или сжимают векторы, но при этом не меняют их направления. Собственные векторы показывают наиболее сильные направления изменения, которые задает матрица. Они будут часто встречаться нам, когда мы будем пытаться уменьшать размер матрицы, сохраняя при этом как можно больше информации. На этом мы заканчиваем уроки про линейную алгебру, а уже в следующих курсах будем применять эти знания, чтобы заниматься реальным анализом данных.

Часть: Линейная алгебра. Матрицы

Модуль: Библиотеки Python и линейная алгебра

Описание модуля: На этой неделе мы познакомимся с Python-библиотеками, содержащими большое количество полезных инструментов: от быстрых операций с многомерными массивами до визуализации и реализации различных математических методов. Кроме того, мы освоим линейную алгебру — основной математический аппарат для работы с данными: в большинстве задач данные можно представить в виде векторов или матриц.

Курс: Математика и Python для анализа данных

Описание курса: Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Данный курс направлен на то, чтобы сформировать этот фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов.

Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных.

В этом курсе вы познакомитесь с фундаментальными математическими понятиями, необходимыми для анализа данных, и получите начальный навык программирования на Python. Курс состоит из двух больших частей. Первая часть курса – практическая, она посвящена языку программирования Python. Вы познакомитесь с синтаксисом и идеологией языка, научитесь писать простые программы. Также вы узнаете о библиотеках, которые часто применяются на практике для анализе данных, например, NumPy, SciPy, Matplotlib и Pandas. Вторая часть курса посвящена таким разделам математики как линейная алгебра, математический анализ, методы оптимизации и теория вероятностей. При этом, упор делается на разъяснение математических понятий и их применение на практике, а не на вывод сложных формул и доказательство теорем.

Программа:
  • Введение
  • Знакомство с курсом
  • Python, уровень 0
  • Знакомство с синтаксисом Python
  • Производная и её применения
  • Немного обсуждений
  • Библиотеки Python и линейная алгебра
  • Библиотеки NumPy, Matplotlib, SciPy, Pandas
  • Линейная алгебра. Векторы
  • Линейная алгебра. Матрицы
  • Оптимизация и матричные разложения
  • Градиент и оптимизация гладких функций
  • Оптимизация негладких функций
  • Матричные разложения
  • Случайность
  • Вероятность и случайные величины
  • Статистики
  • Бонусный урок
Описание преподавателя:
  • Евгений Рябенко — кандидат физико-математических наук, доцент кафедры "Интеллектуальные системы" ФУПМ МФТИ, Data Scientist Фабрики данных Яндекса. Соавтор и преподаватель курса "Прикладной статистический анализ данных", который читается в МФТИ, МГУ и ВШЭ. Занимается анализом данных, био- и нейроинформатикой, кормит синиц.
  • Евгений Соколов — руководитель группы анализа неструктурированных данных в Yandex Data Factory. Окончил факультет ВМК МГУ в 2013 году, сейчас пишет диссертацию про матричные разложения в аспирантуре там же. Ведет практические занятия по машинному обучению на ВМК МГУ и читает лекции на ФКН ВШЭ. Преподаватель Школы Анализа Данных Яндекса.
  • Виктор Кантор – старший преподаватель кафедры “Алгоритмы и технологии программирования” ФИВТ МФТИ, руководитель исследовательской группы Yandex Data Factory. Ведет лекции и семинары в МФТИ на кафедрах “Алгоритмы и технологии программирования”, “Анализ данных”, “Банковские информационные технологии”, “Компьютерная лингвистика” и “Распознавание изображений и обработка текстов”.
  • Эмели Драль – преподаватель ШАД и руководитель исследовательской группы Yandex Data Factory. Окончила РУДН, факультет физико-математических и естественных наук, кафедра “Информационные технологии”. Разрабатывала учебные материалы и вела такие курсы как “Технологии разработки программных систем”, “Объектно-ориентированный подход к разработке программных систем”, “Методы интеллектуального поиска”. В МФТИ ведет семинары курса "Машинное обучение" на ФИВТ, кафедра “Алгоритмы и технологии программирования”.
Категория: Наука о данных

Описание категории: На специализациях и курсах по науке о данных преподаются основы интерпретации данных, проведения различных видов анализа, понимания и представления практических выводов. Начинающие и продолжающие учащиеся освоят такие темы, как качественный и количественный анализ данных, инструменты и методы манипулирования данными, а также алгоритмы машинного обучения.

Тематика: Анализ данных

Материал:



Список литературы

Линейная алгебра
Виктор Кантор:
  • Ильин, Ким. Линейная алгебра и аналитическая геометрия (1998) — МГУ.
  • Умнов. Аналитическая геометрия и линейная алгебра (2011) — МФТИ.
Евгений Рябенко:
  • Деммель. Вычислительная линейная алгебра. Теория и приложения (2001) — понятный кусок про матричные разложения.
Математический анализ
Виктор Кантор:
  • Ильин, Позняк, Основы математического анализа (2005) — МГУ.
  • Тер-Крикоров, Шабунин. Курс математического анализа (2001) — МФТИ, много примеров.
  • Иванов. Лекции по математическому анализу (2000) — МФТИ, очень короткое, но полное изложение.
Методы оптимизации
Евгений Рябенко:
  • Нестеров. Методы выпуклой оптимизации (2010) — математически строгое введение в оптимизацию от живого классика.
  • Boyd, Vandenberghe. Convex Optimization (2004) — идеальная книга по классической оптимизации, много интересных постановок задач.
  • Schneider, Kirkpatrick. Stochastic Optimization (2006) — стохастическая оптимизация во всём многообразии.
Теория вероятностей и статистика
Евгений Соколов:
  • Dekking, Kraaikamp, Lopuhaa, Meester. A Modern Introduction to Probability and Statistics, Understanding Why and How (2005) — доступная книга, описывающая базовые понятия, теоремы и методы; разбирается очень много примеров, тесно связанных с задачами машинного обучения и анализа данных.
Виктор Кантор:
  • Лагутин. Наглядная математическая статистика (2007) — в основном статистика, но есть и небольшое введение в теорию вероятностей. Стоит читать, кроме глав про классификацию и анализ данных, там изложение не слишком современно.
  • Чжун, АитСахлиа. Элементарный курс теории вероятностей. Стохастические процессы и финансовая математика (2007) — очень простое изложение.
  • Отличные лекции с мехмата Новосибирского Государственного Университета: http://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf — теория вероятностей, http://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf — математическая статистика.
Евгений Рябенко:
  • Diez, Barr, Çetinkaya-Rundel, Dorazio. Advanced High School Statistics (2015) — вводная книга, программа соответствует типичному курсу Statistics 101 хорошего западного университета.
  • DasGupta. Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics (2011) — для смелого читателя, рассматриваются в том числе достаточно высокоуровневые методы.
Python
Эмели Драль:
  • Классические руководства по Python: https://docs.python.org/2/tutorial/ (2.7), https://docs.python.org/3/tutorial/(3.5)
  • Reitz. The Hitchhiker’s Guide to Python http://docs.python-guide.org/en/latest/ — довольно полное руководство, в котором рассматриваются вопросы от установки, работы с виртуальным окружением и работы в различных IDE до основных структур языка с примерами кода.
  • Google python class https://developers.google.com/edu/python/ — небольшой бесплатный онлайн-курс по Python для слушателей с минимальным опытом программирования.
Книги, для тех, кому захочется основательно изучить Python:
  • Lutz. Learning Python (2013) — с этой книги можно начинать изучение, она покрывает все основные структуры языка.
  • Lutz. Python Pocket Reference (2015) — подробный справочник.
Конспекты
https://drive.google.com/open?id=0B4sIH7qjgc24cVh0aTNnMEM0eXc

Интересные ресурсы
Ресурсы по материалам 1 недели:
Здесь http://bit.ly/29hALFk вы можете узнать, какие языки программирования сегодня являются самыми востребованным. Интересно, какое место в рейтинге занимает python?

Многие часто спрашивают, почему мы выбрали для специализации python, а не R? Мы подошли к выбору со всей ответственностью, рассмотрели плюсы и минусы обоих вариантов и остановились на python, в первую очередь, из-за простоты изучения, читаемости кода и универсальности языка. Здесь вы можете почитать статью о сравнении языков python и R http://bit.ly/29lkL5z

Ресурсы по материалам 2 недели:
На второй неделе курса Вам предстоит знакомство с библиотекой Pandas для работы с данными в виде таблиц, SciPy и NumPy для работы со статистикой, линейной алгеброй, оптимизационными задачами, а также Matplotlib для визуализации данных. Эти библиотеки очень функциональны, просты для изучения и популярны в мире анализа данных. Они настолько широко распространены, что часто можно встретить их использование для вот таких необычных задач: Python и красивые ножки http://bit.ly/2an3FTt

Занятное дополнение к материалам второй недели:
  • Знакомство с Python, Numpy, Scipy, Matplotlib http://bit.ly/2a4yd06
  • Курс Делфтского Технического Университета про Python и его использование в научных вычислениях http://bit.ly/29GCt4J
Ресурсы по материалам 4 недели:
Статистика — важный инструмент познания, дающий нам механизм порождения новых знаний из наблюдений за окружающим миром. Научиться им пользоваться может быть непросто; если материал лекций покажется Вам сложным, посмотрите, как понятия статистики объясняются на котиках http://bit.ly/29T53jd или в танце http://bit.ly/29PH9l5